Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Org Biomol Chem ; 2023 Jun 09.
Article in English | MEDLINE | ID: covidwho-20235994

ABSTRACT

Nirmatrelvir (Paxlovid) is an FDA approved drug that targets SARS-COV-2 3CLprotease. We report an optically active synthesis of nirmatrelvir that avoids a critical epimerization step. Our initial coupling of gem-dimethyl bicyclo[3.1.0]proline methyl ester with tert-leucine-trifluoroacetamide using standard coupling reagents, EDC and HOBt, provided the corresponding dipeptide derivative in excellent yield, however, a significant epimerization was observed at the tert-leucine bearing chiral center. To circumvent this epimerization problem, we developed a ZnCl2-mediated direct N-trifluroacetylation of Boc-derivatives for the synthesis of nirmatrelvir. This protocol has been utilized for N-acyl bond formation with other anhydrides without epimerization. The present synthetic route can be useful for the synthesis of structural variants of nirmatrelvir without significant epimerization.

2.
ChemMedChem ; 17(22): e202200440, 2022 Nov 18.
Article in English | MEDLINE | ID: covidwho-2127643

ABSTRACT

COVID-19, caused by SARS-CoV-2 infection, continues to be a major public health crisis around the globe. Development of vaccines and the first cluster of antiviral drugs has brought promise and hope for prevention and treatment of severe coronavirus disease. However, continued development of newer, safer, and more effective antiviral drugs are critically important to combat COVID-19 and counter the looming pathogenic variants. Studies of the coronavirus life cycle revealed several important biochemical targets for drug development. In the present review, we focus on recent drug design and medicinal chemistry efforts in small molecule drug discovery, including the development of nirmatrelvir that targets viral protein synthesis and remdesivir and molnupiravir that target viral RdRp. These are recent FDA approved drugs for the treatment of COVID-19.


Subject(s)
COVID-19 Drug Treatment , Humans , SARS-CoV-2 , Chemistry, Pharmaceutical , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Antiviral Agents/chemistry , Drug Development
3.
Molecules ; 26(19)2021 Sep 24.
Article in English | MEDLINE | ID: covidwho-1438673

ABSTRACT

We report the design and synthesis of a series of new 5-chloropyridinyl esters of salicylic acid, ibuprofen, indomethacin, and related aromatic carboxylic acids for evaluation against SARS-CoV-2 3CL protease enzyme. These ester derivatives were synthesized using EDC in the presence of DMAP to provide various esters in good to excellent yields. Compounds are stable and purified by silica gel chromatography and characterized using 1H-NMR, 13C-NMR, and mass spectral analysis. These synthetic derivatives were evaluated in our in vitro SARS-CoV-2 3CLpro inhibition assay using authentic SARS-CoV-2 3CLpro enzyme. Compounds were also evaluated in our in vitro antiviral assay using quantitative VeroE6 cell-based assay with RNAqPCR. A number of compounds exhibited potent SARS-CoV-2 3CLpro inhibitory activity and antiviral activity. Compound 9a was the most potent inhibitor, with an enzyme IC50 value of 160 nM. Compound 13b exhibited an enzyme IC50 value of 4.9 µM. However, it exhibited a potent antiviral EC50 value of 24 µM in VeroE6 cells. Remdesivir, an RdRp inhibitor, exhibited an antiviral EC50 value of 2.4 µM in the same assay. We assessed the mode of inhibition using mass spectral analysis which suggested the formation of a covalent bond with the enzyme. To obtain molecular insight, we have created a model of compound 9a bound to SARS-CoV-2 3CLpro in the active site.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , COVID-19 Drug Treatment , Coronavirus 3C Proteases/antagonists & inhibitors , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Chlorocebus aethiops , Coronavirus 3C Proteases/metabolism , Esters/chemistry , Esters/pharmacology , Halogenation , Humans , Ibuprofen/analogs & derivatives , Ibuprofen/pharmacology , Indomethacin/analogs & derivatives , Indomethacin/pharmacology , Molecular Docking Simulation , Pyridines/chemistry , Pyridines/pharmacology , SARS-CoV-2/metabolism , Salicylic Acid/chemistry , Salicylic Acid/pharmacology , Vero Cells
4.
J Med Chem ; 64(19): 14702-14714, 2021 10 14.
Article in English | MEDLINE | ID: covidwho-1412442

ABSTRACT

Here, we report the synthesis, structure-activity relationship studies, enzyme inhibition, antiviral activity, and X-ray crystallographic studies of 5-chloropyridinyl indole carboxylate derivatives as a potent class of SARS-CoV-2 chymotrypsin-like protease inhibitors. Compound 1 exhibited a SARS-CoV-2 3CLpro inhibitory IC50 value of 250 nM and an antiviral EC50 value of 2.8 µM in VeroE6 cells. Remdesivir, an RNA-dependent RNA polymerase inhibitor, showed an antiviral EC50 value of 1.2 µM in the same assay. Compound 1 showed comparable antiviral activity with remdesivir in immunocytochemistry assays. Compound 7d with an N-allyl derivative showed the most potent enzyme inhibitory IC50 value of 73 nM. To obtain molecular insight into the binding properties of these molecules, X-ray crystal structures of compounds 2, 7b, and 9d-bound to SARS-CoV 3CLpro were determined, and their binding properties were compared.


Subject(s)
Coronavirus 3C Proteases/antagonists & inhibitors , Indoles/chemistry , Protease Inhibitors/chemistry , SARS-CoV-2/enzymology , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/chemistry , Adenosine Monophosphate/metabolism , Alanine/analogs & derivatives , Alanine/chemistry , Alanine/metabolism , Animals , Binding Sites , COVID-19/pathology , COVID-19/virology , Chlorocebus aethiops , Coronavirus 3C Proteases/metabolism , Crystallography, X-Ray , Humans , Indoles/chemical synthesis , Indoles/metabolism , Molecular Dynamics Simulation , Protease Inhibitors/chemical synthesis , Protease Inhibitors/metabolism , Pyridines/chemistry , SARS-CoV-2/isolation & purification , Structure-Activity Relationship , Vero Cells
5.
Nat Commun ; 12(1): 668, 2021 01 28.
Article in English | MEDLINE | ID: covidwho-1387328

ABSTRACT

Except remdesivir, no specific antivirals for SARS-CoV-2 infection are currently available. Here, we characterize two small-molecule-compounds, named GRL-1720 and 5h, containing an indoline and indole moiety, respectively, which target the SARS-CoV-2 main protease (Mpro). We use VeroE6 cell-based assays with RNA-qPCR, cytopathic assays, and immunocytochemistry and show both compounds to block the infectivity of SARS-CoV-2 with EC50 values of 15 ± 4 and 4.2 ± 0.7 µM for GRL-1720 and 5h, respectively. Remdesivir permitted viral breakthrough at high concentrations; however, compound 5h completely blocks SARS-CoV-2 infection in vitro without viral breakthrough or detectable cytotoxicity. Combination of 5h and remdesivir exhibits synergism against SARS-CoV-2. Additional X-ray structural analysis show that 5h forms a covalent bond with Mpro and makes polar interactions with multiple active site amino acid residues. The present data suggest that 5h might serve as a lead Mpro inhibitor for the development of therapeutics for SARS-CoV-2 infection.


Subject(s)
COVID-19 Drug Treatment , Coronavirus Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , Viral Proteases/drug effects , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/pharmacology , Animals , Antiviral Agents/pharmacology , Cell Line , Chlorocebus aethiops , Humans , Indoles/pharmacology , Pyridines/pharmacology , Vero Cells , Viral Proteases/metabolism
6.
mBio ; 11(4)2020 08 20.
Article in English | MEDLINE | ID: covidwho-724620

ABSTRACT

We assessed various newly generated compounds that target the main protease (Mpro) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and various previously known compounds reportedly active against SARS-CoV-2, employing RNA quantitative PCR (RNA-qPCR), cytopathicity assays, and immunocytochemistry. Here, we show that two indole-chloropyridinyl-ester derivatives, GRL-0820 and GRL-0920, exerted potent activity against SARS-CoV-2 in cell-based assays performed using VeroE6 cells and TMPRSS2-overexpressing VeroE6 cells. While GRL-0820 and the nucleotide analog remdesivir blocked SARS-CoV-2 infection, viral breakthrough occurred. No significant anti-SARS-CoV-2 activity was found for several compounds reportedly active against SARS-CoV-2 such as lopinavir, nelfinavir, nitazoxanide, favipiravir, and hydroxychroloquine. In contrast, GRL-0920 exerted potent activity against SARS-CoV-2 (50% effective concentration [EC50] = 2.8 µM) and dramatically reduced the infectivity, replication, and cytopathic effect of SARS-CoV-2 without significant toxicity as examined with immunocytochemistry. Structural modeling shows that indole and chloropyridinyl of the derivatives interact with two catalytic dyad residues of Mpro, Cys145 and His41, resulting in covalent bonding, which was verified using high-performance liquid chromatography-mass spectrometry (HPLC/MS), suggesting that the indole moiety is critical for the anti-SARS-CoV-2 activity of the derivatives. GRL-0920 might serve as a potential therapeutic for coronavirus disease 2019 (COVID-19) and might be optimized to generate more-potent anti-SARS-CoV-2 compounds.IMPORTANCE Targeting the main protease (Mpro) of SARS-CoV-2, we identified two indole-chloropyridinyl-ester derivatives, GRL-0820 and GRL-0920, active against SARS-CoV-2, employing RNA-qPCR and immunocytochemistry and show that the two compounds exerted potent activity against SARS-CoV-2. While GRL-0820 and remdesivir blocked SARS-CoV-2 infection, viral breakthrough occurred as examined with immunocytochemistry. In contrast, GRL-0920 completely blocked the infectivity and cytopathic effect of SARS-CoV-2 without significant toxicity. Structural modeling showed that indole and chloropyridinyl of the derivatives interacted with two catalytic dyad residues of Mpro, Cys145 and His41, resulting in covalent bonding, which was verified using HPLC/MS. The present data should shed light on the development of therapeutics for COVID-19, and optimization of GRL-0920 based on the present data is essential to develop more-potent anti-SARS-CoV-2 compounds for treating COVID-19.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Indoles/pharmacology , Pneumonia, Viral/drug therapy , Amino Acid Sequence , Animals , Betacoronavirus/enzymology , COVID-19 , Chlorocebus aethiops , Chloroquine/pharmacology , Coronavirus 3C Proteases , Coronavirus Infections/virology , Cysteine Endopeptidases/chemistry , Cysteine Endopeptidases/genetics , Cysteine Endopeptidases/metabolism , Indoles/chemistry , Indoles/therapeutic use , Models, Molecular , Pandemics , Pneumonia, Viral/virology , SARS-CoV-2 , Vero Cells , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism
7.
ChemMedChem ; 15(11): 907-932, 2020 06 04.
Article in English | MEDLINE | ID: covidwho-108817

ABSTRACT

The COVID-19 pandemic caused by SARS-CoV-2 infection is spreading at an alarming rate and has created an unprecedented health emergency around the globe. There is no effective vaccine or approved drug treatment against COVID-19 and other pathogenic coronaviruses. The development of antiviral agents is an urgent priority. Biochemical events critical to the coronavirus replication cycle provided a number of attractive targets for drug development. These include, spike protein for binding to host cell-surface receptors, proteolytic enzymes that are essential for processing polyproteins into mature viruses, and RNA-dependent RNA polymerase for RNA replication. There has been a lot of ground work for drug discovery and development against these targets. Also, high-throughput screening efforts have led to the identification of diverse lead structures, including natural product-derived molecules. This review highlights past and present drug discovery and medicinal-chemistry approaches against SARS-CoV, MERS-CoV and COVID-19 targets. The review hopes to stimulate further research and will be a useful guide to the development of effective therapies against COVID-19 and other pathogenic coronaviruses.


Subject(s)
Antiviral Agents/therapeutic use , Chemistry, Pharmaceutical/trends , Coronavirus Infections/drug therapy , Drug Development , Pneumonia, Viral/drug therapy , Antiviral Agents/pharmacology , COVID-19 , Drug Discovery , Humans , Models, Molecular , Pandemics , Protease Inhibitors/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL